

Learning Word Representations

Computer Science Department

Carl Edwards

4/2/2020

- If I say "What are the colors of a rainbow," how does Siri know what I mean?
- How does Siri understand questions?

"Do you eat" tap to edit I don't eat. But I do like digesting information.

https://www.freemake.com/blog/siri-answers-20-hilarious-questions/

"May the _____ be with you."

"There's no _____ like home."

"Don't count the _____, make the days count." - Muhammad Ali

"Hasta la _____, baby."

What are word representations?

Why do we need word representations?

How do we make word representations?

ASCII

- Represent each letter
 as a number
- How computers traditionally represent words
- Why might this not be useful?

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	0	96	60	140	1
1	1	1		33	21	41	1	65	41	101	Ă	97	61	141	а
2	2	2		34	22	42		66	42	102	в	98	62	142	b
3	3	3		35	23	43	#	67	43	103	С	99	63	143	с
4	4	4		36	24	44	5	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	8	70	46	106	F	102	66	146	f
7	7	7		39	27	47	•	71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	1
10	A	12		42	ZA	52		74	4A	112	J	106	6A	152	1
11	B	13		43	2B	53	+	75	4B	113	ĸ	107	6B	153	k
12	C	14		44	2C	54		76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55	-	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	1	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	p
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	s
20	14	24		52	34	64	4	84	54	124	т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	w	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	3A	72	1	90	5A	132	z	122	7A	172	z
27	18	33		59	3B	73		91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	1	124	7C	174	Ê.
29	1D	35		61	3D	75	=	93	5D	135	1	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	-
31	1F	37		63	3F	77	?	95	5F	137		127	7F	177	

- A vector is essentially a fixed-length list of numbers
- For example,

A = [3,1] B = [1,-1] A + B = [4,0]

https://mathinsight.org/vector_introduction

One-Hot Encodings

- Represent a word with a vector of ones and zeros
- Have a vocabulary (a set of words) called V
 - V has a size of S words
- · Each vector will have one element for each word
- Elements are all 0 except for the word's element which is one

Example:

V = {cat, dog, bird}, S = 3
cat =
$$[1,0,0]$$

dog = $[0,1,0]$
bird = $[0,0,1]$

bird

Z axis

Ο

cat

> Y axis

- Is there any meaning?
- Why is bird the same distance from cat as it is from dog?
- Shouldn't cats and dogs be more related, or closer together, than birds?

Example: V = {cat, dog, bird} cat = [1,0,0] dog = [0,1,0]

bird = [0,0,1]

- semantic definition: relating to meaning in language or logic.
- We want computers to understand words, not just represent them.
- How can we do this?

Defining Features

Computer Science

- Neural networks take numbers as input and predict some output.
- There are 'weights' that are multiplied on each of the black lines.
- We can think of neural networks as a "function."
- Our goal is to "teach" the neural network to give us outputs that we want.

- Can we use written language to help improve representations?
- The word2vec (word to vector) algorithm uses written text to learn.
- Based on the distributional hypothesis:

"you shall know a word by the company it keeps" - Firth (1957)

CBOW

w(t-2)

w(t-1)

w(t+1)

w(t+2)

word2vec continued

https://towardsdatascience.com/skip-gram-nlp-context-words-prediction-algorithm-5bbf34f84e0c

word2vec algorithm - (Mikolov et al. 2013)

Window Size	Text	Skip-grams		
	[The wide road shimmered] in the hot sun.	wide, the wide, road wide, shimmered		
2	The <mark>[wide road <u>shimmered</u> in the]</mark> hot sun.	shimmered, wide shimmered, road shimmered, in shimmered, the		
	The wide road shimmered in [the hot sun].	sun, the sun, hot		
	[The wide road shimmered in] the hot sun.	wide, the wide, road wide, shimmered wide, in		
3	<mark>[The wide road <u>shimmered</u> in the hot]</mark> sun.	shimmered, the shimmered, wide shimmered, road shimmered, in shimmered, the shimmered, hot		
	The wide road shimmered [in the hot <u>sun</u>].	sun, in sun, the sun, hot		

https://www.tensorflow.org/tutorials/text/word2vec

What's another way to measure similarity?

https://datascience-enthusiast.com/DL/Operations_on_word_vectors.html

More word2vec

https://kawine.github.io/blog/nlp/2019/06/21/word-analogies.html

Question Answering

https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html

Sentiment Analysis

 e.g Is a tweet happy or sad?

https://monkeylearn.com/sentiment-analysis/

What can we do with these embeddings?

What can we do with these embeddings?

Image Captioning

A young boy is playing basketball.	Two dogs play in the grass.	A dog swims in the water.	A little girl in a pink shirt is swinging.
A group of people walking down a street.	A group of women dressed in formal attire.	Two children play in the water.	A dog jumps over a hurdle.

https://github.com/danieljl/keras-image-captioning

Where are we now? BERT (Devlin et al. 2018)

BERT uses attention

(a)

(b)

https://observablehq.com/@clpuc/analyzing-the-design-space-for-visualizing-neural-attenti

- Improving Siri's ability to learn what you mean
 - Can Siri learn things specifically to communicate with you and the way you talk?
- Can we integrate pictures better with language?
- Can we understand entire books?
- How can we learn irony and sarcasm?
- How can we learn slang words quickly without examples?
 - Right now we need billions of examples!

Does anyone have any questions?